工礦信息
|
薄膜太陽能電池材料種類 薄膜太陽能電池材料種類 砷化鎵GaAs太陽能電池 銅銦CIS硒太陽能電池 碲化鎘CdTe太陽能電池 淺談多元化合物薄膜太陽能電池 薄膜太陽能電池材料種類 砷化鎵GaAs太陽能電池 GaAs屬于III-V族化合物半導(dǎo)體材料,其能隙為1.4eV,正好為高吸收率太陽光的值,與太陽光譜的匹配較適合,且能耐高溫,在250℃的條件下,光電轉(zhuǎn)換性能仍很良好,其最高光電轉(zhuǎn)換效率約30%,特別適合做高溫聚光太陽電池。砷化鎵生產(chǎn)方式和傳統(tǒng)的硅晶圓生產(chǎn)方式大不相同,砷化鎵需要采用磊晶技術(shù)制造,這種磊晶圓的直徑通常為4—6英寸,比硅晶圓的12英寸要小得多。磊晶圓需要特殊的機臺,同時砷化鎵原材料成本高出硅很多,最終導(dǎo)致砷化鎵成品IC成本比較高。磊晶目前有兩種,一種是化學(xué)的MOCVD,一種是物理的MBE。GaAs等III-V化合物薄膜電池的制備主要采用MOVPE和LPE技術(shù),其中MOVPE方法制備GaAs薄膜電池受襯底位錯,反應(yīng)壓力,III-V比率,總流量等諸多參數(shù)的影響。GaAs(砷化鎵)光電池大多采用液相外延法或MOCVD技術(shù)制備。用GaAs作襯底的光電池效率高達(dá)29.5%(一般在19.5%左右),產(chǎn)品耐高溫和輻射,但生產(chǎn)成本高,產(chǎn)量受限,現(xiàn)今主要作空間電源用。以硅片作襯底,MOCVD技術(shù)異質(zhì)外延方法制造GaAs電池是降用低成本很有希望的方法。已研究的砷化鎵系列太陽電池有單晶砷化鎵,多晶砷化鎵,鎵鋁砷--砷化鎵異質(zhì)結(jié),金屬-半導(dǎo)體砷化鎵,金屬--絕緣體--半導(dǎo)體砷化鎵太陽電池等。 砷化鎵材料的制備類似硅半導(dǎo)體材料的制備,有晶體生長法,直接拉制法,氣相生長法,液相外延法等。由于鎵比較稀缺,砷有毒,制造成本高,此種太陽電池的發(fā)展受到影響。除GaAs外,其它III-V化合物如Gasb,GaInP等電池材料也得到了開發(fā)。 1998年德國費萊堡太陽能系統(tǒng)研究所制得的GaAs太陽能電池轉(zhuǎn)換效率為24.2%,為歐洲記錄。首次制備的GaInP電池轉(zhuǎn)換效率為14.7%。另外,該研究所還采用堆疊結(jié)構(gòu)制備GaAs,Gasb電池,該電池是將兩個獨立的電池堆疊在一起,GaAs作為上電池,下電池用的是GaSb,所得到的電池效率達(dá)到31.1%。 砷化鎵(GaAs)III-V化合物電池的轉(zhuǎn)換效率可達(dá)28%,GaAs化合物材料具有十分理想的光學(xué)帶隙以及較高的吸收效率,抗輻照能力強,對熱不敏感,適合于制造高效單結(jié)電池。但是GaAs材料的價格不菲,因而在很大程度上限制了用GaAs電池的普及。 銅銦CIS硒太陽能電池 銅銦硒CuInSe2簡稱CIC.CIS材料的能降為1.1 eV,適于太陽光的光電轉(zhuǎn)換,另外,CIS薄膜太陽能電池不存在光致衰退問題。因此,CIS用作高轉(zhuǎn)換效率薄膜太陽能電池材料也引起了人們的注目。 CIS電池薄膜的制備主要有真空蒸鍍法和硒化法。真空蒸鍍法是采用各自的蒸發(fā)源蒸鍍銅,銦和硒,硒化法是使用H2Se疊層膜硒化,但該法難以得到組成均勻的CIS。CIS薄膜電池從80年代最初8%的轉(zhuǎn)換效率發(fā)展到現(xiàn)今的15%左右。日本松下電氣工業(yè)公司開發(fā)的摻鎵的CIS電池,其光電轉(zhuǎn)換效率為15.3%(面積25 px2)。1995年美國可再生能源研究室研制出轉(zhuǎn)換效率17.1%的CIS太陽能電池,這是迄今為止世界上該電池的最高轉(zhuǎn)換效率。預(yù)計到2000年CIS電池的轉(zhuǎn)換效率將達(dá)到20%,相當(dāng)于多晶硅太陽能電池。CIS作為太陽能電池的半導(dǎo)體材料,具有價格低廉,性能良好和工藝簡單等優(yōu)點。 碲化鎘CdTe太陽能電池 CdTe是Ⅱ-Ⅵ族化合物半導(dǎo)體,帶隙1.5eV,與太陽光譜非常匹配,最適合于光電能量轉(zhuǎn)換,是一種良好的PV材料,具有很高的理論效率(28%),性能很穩(wěn)定,一直被光伏界看重,是技術(shù)上發(fā)展較快的一種薄膜電池。碲化鎘容易沉積成大面積的薄膜,沉積速率也高。CdTe薄膜太陽電池通常以CdS/CdTe異質(zhì)結(jié)為基礎(chǔ)。盡管CdS和CdTe和晶格常數(shù)相差10%,但它們組成的異質(zhì)結(jié)電學(xué)性能優(yōu)良,制成的太陽電池的填充因子高達(dá)FF =0.75。 制備CdTe多晶薄膜的多種工藝和技術(shù)已經(jīng)開發(fā)出來,如近空間升華、電沉積、PVD、CVD、CBD、絲網(wǎng)印刷、濺射、真空蒸發(fā)等。絲網(wǎng)印刷燒結(jié)法:由含CdTe、CdS漿料進行絲網(wǎng)印刷CdTe、CdS膜,然后在600~700℃可控氣氛下進行熱處理1h得大晶粒薄膜。近空間升華法:采用玻璃作襯底,襯底溫度500~600℃,沉積速率10μm/min.真空蒸發(fā)法:將CdTe從約700℃加熱鉗堝中升華,冷凝在300~400℃襯底上,典型沉積速率1 nm/s. 以CdTe吸收層,CdS作窗口層半導(dǎo)體異質(zhì)結(jié)電池的典型結(jié)構(gòu):減反射膜/玻璃/(SnO2:F)/CdS/P-CdTe/背電極。電池的實驗室效率不斷攀升,現(xiàn)今突16%。20世紀(jì)90年代初,CdTe電池已實現(xiàn)了規(guī);a(chǎn),但市場發(fā)展緩慢,市場份額一直徘徊在1%左右。商業(yè)化電池效率平均為8%-10%。 人們認(rèn)為,CdTe薄膜太陽電池是太陽能電池中最容易制造的,因而它向商品化進展最快。提高效率就是要對電池結(jié)構(gòu)及各層材料工藝進行優(yōu)化,適當(dāng)減薄窗口層CdS的厚度,可減少入射光的損失,從而增加電池短波響應(yīng)以提高短路電流密度,較高轉(zhuǎn)換效率的CdTe電池就采用了較薄的CdS窗口層而創(chuàng)了最高紀(jì)錄。要降低成本,就必須將CdTe的沉積溫度降到550℃以下,以適于廉價的玻璃作襯底;實驗室成果走向產(chǎn)業(yè),必須經(jīng)過組件以及生產(chǎn)模式的設(shè)計、研究和優(yōu)化過程。至今,不僅有許多國家的研究小組已經(jīng)能夠在低襯底溫度下制造出轉(zhuǎn)換效率12%以上的CdTe太陽電池,而且在大面積組件方面取得了可喜的進展,許多公司正在進行CdTe薄膜太陽電池的中試和生產(chǎn)廠的建設(shè),有的已經(jīng)投產(chǎn)。 國外研究 在廣泛深入的應(yīng)用研究基礎(chǔ)上,國際上許多國家的CdTe薄膜太陽電池已由實驗室研究階段開始走向規(guī)模工業(yè)化生產(chǎn)。1998年美國的CdTe電池產(chǎn)量就為0.2MW,日本的CdTe電池產(chǎn)量為2.0MW。德國公司將在Rudisleben建成一家年產(chǎn)10MW的CdTe薄膜太陽電池組件生產(chǎn)廠,預(yù)計其生產(chǎn)成本將會低于$1.4/W。該組件不但性能優(yōu)良,而且生產(chǎn)工藝先進,使得該光伏組件具有完美的外型,能在建筑物上使用,既拓寬了應(yīng)用面,又可取代某些建筑材料而使電池成本進一步降低。 CdTe薄膜太陽電池是薄膜太陽電池中發(fā)展較快的一種光伏器件。美國南佛羅里達(dá)大學(xué)于1993年用升華法在25px2面積上做出效率為15.8 %的太陽電池,隨后,日本報道了CdTe基電池以CdTe作吸收層,CdS作窗口層的n-CdS/ p-CdTe半導(dǎo)體異質(zhì)結(jié)電池,其典型結(jié)構(gòu)為MgF2/玻璃/ SnO2:F/ n-CdS/ p-CdTe/背電極,小面積電池最高轉(zhuǎn)換效率16%,成為當(dāng)時CdTe薄膜太陽能電池的最高紀(jì)錄,如今,太陽電池的研究方向是高轉(zhuǎn)換效率,低成本和高穩(wěn)定性。因此,以CdTe為代表的薄膜太陽電池倍受關(guān)注,面積為90000px2電池轉(zhuǎn)換效率達(dá)到11.1%的水平。美國國家可再生能源實驗室提供了Solar Cells lnc的面積為171975px2CdTe薄膜太陽電池的測試結(jié)果,轉(zhuǎn)換效率達(dá)到7.7%;Bp Solar的CdTe薄膜太陽電池,面積為113500px2,效率為8.4%,面積為17650px2的太陽電池,轉(zhuǎn)換效率達(dá)到10.1%;Goldan Photon的CdTe太陽電池,面積為88200px2,轉(zhuǎn)換效率為7.7%。 碲化鎘薄膜太陽電池的制造成本低,現(xiàn)今,已獲得的最高效率為16%,是應(yīng)用前景最好的新型太陽電池,它已經(jīng)成為美、德、日、意等國研究開發(fā)的主要對象。 CdTe薄膜太陽電池較其他的薄膜電池容易制造,因而它向商品化進展最快。已由實驗室研究階段走向規(guī);I(yè)生產(chǎn)。下一步的研發(fā)重點,是進一步降低成本、提高效率并改進與完善生產(chǎn)工藝。CdTe太陽能電池在具備許多有利于競爭的因素下,但在2002年其全球市占率僅0.42﹪,現(xiàn)今CdTe電池商業(yè)化產(chǎn)品效率已超過10﹪,究其無法耀升為市場主流的原因,大至有下列幾點:一、模塊與基材材料成本太高,整體CdTe太陽能電池材料占總成本的53﹪,其中半導(dǎo)體材料只占約5.5﹪。二、碲天然運藏量有限,其總量勢必?zé)o法應(yīng)付大量而全盤的倚賴此種光電池發(fā)電之需。三、鎘的毒性,使人們無法放心的接受此種光電池。 CdTe太陽能電池作為大規(guī)模生產(chǎn)與應(yīng)用的光伏器件,最值得關(guān)注的是環(huán)境污染問題。有毒元素Cd對環(huán)境的污染和對操作人員健康的危害是不容忽視的。我們不能在獲取清潔能源的同時,又對人體和人類生存環(huán)境造成新的危害。有效地處理廢棄和破損的CdTe組件,技術(shù)上很簡單。而Cd是重金屬,有劇毒,Cd的化合物與Cd一樣有毒。其主要影響,一是含有Cd的塵埃通過呼吸道對人類和其他動物造成的危害;二是生產(chǎn)廢水廢物排放所造成的污染。因此,對破損的玻璃片上的Cd和Te應(yīng)去除并回收,對損壞和廢棄的組件應(yīng)進行妥善處理,對生產(chǎn)中排放的廢水、廢物應(yīng)進行符合環(huán)保標(biāo)準(zhǔn)的處理。現(xiàn)今各國均在大力研究解決CdTe薄膜太陽能電池發(fā)展的因素,相信上述問題不久將會逐個解決,從而使碲化鎘薄膜電池成為未來社會新的能源成分之一。 相關(guān)論述 淺談多元化合物薄膜太陽能電池 據(jù)了解,科學(xué)家為了尋找單晶硅電池的替代品,除開發(fā)了多晶硅、非晶硅薄膜太陽能電池外,又不斷研制其它材料的太陽能電池。其中主要包括砷化鎵III-V族化合物、硫化鎘、硫化鎘及銅錮硒薄膜電池等。 在上述電池中,盡管硫化鎘、碲化鎘多晶薄膜電池的效率較非晶硅薄膜太陽能電池效率高,成本較單晶硅電池低,并且也易于大規(guī)模生產(chǎn),但由于鎘有劇毒,會對環(huán)境造成嚴(yán)重的污染,因此,并不是晶體硅太陽能電池最理想的替代。 據(jù)了解,砷化鎵III-V化合物及銅銦硒薄膜電池由于具有較高的轉(zhuǎn)換效率受到人們的普遍重視。GaAs等III-V化合物薄膜電池的制備主要采用 MOVPE和LPE技術(shù),其中MOVPE方法制備GaAs薄膜電池受襯底位錯、反應(yīng)壓力、III-V比率、總流量等諸多參數(shù)的影響。 除GaAs外,其它III-V化合物如GaSb、GaInP等電池材料也得到了開發(fā)。 另外,研究所還采用堆疊結(jié)構(gòu)制備GaAs,Gasb電池,該電池是將兩個獨立的電池堆疊在一起,GaAs作為上電池,下電池用的是Gasb,所得到的電池效率達(dá)到31.1%。 銅銦硒CuInSe2簡稱CIS。CIS材料的能降為1.1 eV,適于太陽光的光電轉(zhuǎn)換,另外,CIS薄膜太陽電池不存在光致衰退問題。因此,CIS用作高轉(zhuǎn)換效率薄膜太陽能電池材料也引起了人們的注目。 CIS作為太陽能電池的半導(dǎo)體材料,具有價格低廉、性能良好和工藝簡單等優(yōu)點,將成為今后發(fā)展太陽能電池的一個重要方向。唯一的問題是材料的來源,由于銦和硒都是比較稀有的元素,因此,這類電池的發(fā)展又必然受到限制。 【打印本頁】
|